Effects of solar radiation and woodsmoke on risk of childhood leukaemia: system analysis

«Radiation and Risk», 2018, vol. 27, No. 4, pp.87-94

DOI: 10.21870/0131-3878-2018-27-4-87-94


Chizhov A.Ya. – Prof., Academician of the REA, MD. PContacts: 8/5-423, Podolskoye shosse, Moscow, 115093, Russia. Tel. +79039695460; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Pinaev S.K. – Senior Researcher, C. Sc., Med.

1Peoples' Friendship University of Russia, Moscow
2RAS, Far Eastern branch, Computer center, Khabarovsk


Radiation is recognized risk factor for childhood leukemia. The impact of tobacco smoke and traffic-related pollutants on risk of leukemia development in children is discussed. To study relationship between solar activity, wood smoke and risk of leukemia in children is very important for understanding the situation in a specific area, as well as for acquiring new knowledge of causes of this type of hemoblastoses. The paper presents system analysis of effects of exposure to solar radiation and wood smoke on risk for leukemia development in young children at 0-4 years, resided in the Khabarovsk region. Authors studied more accurate information on leukemia incidence among chil-dren at 0-4 years, born from 1972 to 1988. To study effects of solar activity and amount of wildfires in 1-2-3 years before and after the birth of the children on leukemia rate in the cohort under study multivariate analysis was used. Linear relationship between leukemia rate and amount of wildfires 2 years before the birth of the children (r=0.465; p=0.060) and solar activity in 3 years after the birth (r=0.567; p=0.018) was found. Using multivariate analysis, we found positive multiple correlation (R=0.614; F(2.14)=4.236; p&lq;0.036) between the amount of wildfires, solar activity and leukemia rate 2 years before and 3 years after the birth of the subjects under study. Results of the analysis confirmed published information on leukemogenic potency of the woodsmoke in the prenatal ontogenesis, the results allowed the authors to specify timeframe of the dangerous period. The authors suggested that detected linear relationship between solar activity and leukemia rate among young children at 0-4 years was associated with effects of solar activity on the intensity of magnetic fields, risk factors for leukemia. Wild fires affected the intensity of magnetic fields, as well as caused emission of natural radionuclides from the soil to the atmosphere; radioactive pollutants are risk factors cancer. To reduce the risk for childhood leukemia future parents should begin taking vitamins 1-2 years before the planned conception, mothers should take vitamins during pregnancy and lactation. Prolong breast feeding and taking transfer factor for immune recovery.

Key words
Radiation, solar radiation, ecology, environmental factors, woodsmoke, wildfires, prenatal, postnatal, children, carcinogenesis, leukemia, system analysis.


1. Agadzhanyan N.A., Chizhov A.Ya., Kim T.A. Bolezni tsivilizatsii [Diseases of civilization]. Ekologiya cheloveka – Human Ecology, 2003, no. 4, pp. 8-11.

2. Metayer C., Dahl G., Wiemels J., Miller M. Childhood leukemia: a preventable disease. Pediatrics, 2016, vol. 138, Suppl. 1, pp. S45-S55.

3. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer, 2018, vol. 8, no. 8, pp. 471-484. doi: 10.1038/s41568-018-0015-6.

4. Cárceles-Álvarez A., Ortega-García J.A., López-Hernández F.A., Orozco-Llamas M., Espinosa-López B., Tobarra-Sánchez E., Alvarez L. Spatial clustering of childhood leukaemia with the integration of the Paediatric Environmental History. Environ. Res., 2017, vol. 156, pp. 605-612. doi: 10.1016/j.envres.2017.04.019.

5. Metayer C., Petridou E., Aranguré J.M., Roman E., Schüz J., Magnani C., Mora A.M., Mueller B.A., de Oliveira M.S., Dockerty J.D., McCauley K., Lightfoot T., Hatzipantelis E., Rudant J., Flores-Lujano J., Kaatsch P., Miligi L., Wesseling C., Doody D.R., Moschovi M.; MIGICCL Group, Orsi L., Mattioli S., Selvin S., Kang A.Y., Clavel J. Parental tobacco smoking and acute myeloid leukemia: the Childhood Leukemia International Consortium. Am. J. Epidemiol., 2016, vol. 184, no. 4, pp. 261-273. doi: 10.1093/aje/kww018.

6. Nelson L., Valle J., King G., Mills P.K., Richardson M.J., Roberts E.M., Smith D., English P. Estimating the proportion of childhood cancer cases and costs attributable to the environment in California. Am. J. Public Health, 2017, vol. 107, no. 5, pp. 756-762. doi: 10.2105/AJPH.2017.303690.

7. Boothe V.L., Boehmer T.K., Wendel A.M., Yip F.Y. Residential traffic exposure and childhood leukemia: a systematic review and meta-analysis. Am. J. Prev. Med., 2014, vol. 46, no. 4, pp. 413-422. doi: 10.1016/j.amepre.2013.11.004.

8. Modonesi C., Oddone E., Panizza C, Gatta G. Childhood cancer and environmental integrity: a commentary and a proposal. Rev. Saude Publica, 2017, vol. 10, no. 51, pp. 29. doi: 10.1590/S1518-8787.2017051006744.

9. McNally R.J., Parker L. Environmental factors and childhood acute leukemias and lymphomas. Leuk. Lymphoma, 2006, vol. 47, no. 4, pp. 583-598. 10. Lombardi C., Heck J.E., Cockburn M., Ritz B. Solar UV radiation and cancer in young children. Cancer Epidemiol. Biomarkers Prev., 2013, vol. 22, no. 6, pp. 1118-1128. doi: 10.1158/1055-9965.EPI-12-1316.

11. International Agency for Research on Cancer. International Incidence of Childhood Cancer. Volume 3, Results. Available at: http://iicc.iarc.fr/results/comparative.php.

12. Zlokachestvennyye novoobrazovaniya v Rossii v 2015 godu (zabolevayemost’ i smertnost’) [Malignant neoplasms in Russia in 2015 (morbidity and mortality)]. Eds.: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow, P. Gertsen MORI, 2017. 250 p.

13. Kosykh N.E., Savin S.Z. Sistemnyy analiz rasprostraneniya zlokachestvennykh novoobrazovaniy u detey [System analysis of the spread of malignant neoplasms in children]. Vladivostok, Dal’nauka, 1997. 160 p.

14. Edinaya mezhvedomstvennaya informatsionno-statisticheskaya sistema [Unified interdepartmental information and statistical system]. Available at: https://www.fedstat.ru.

15. Khvorova L.A., Bryksin V.M., Gavrilovskaya N.V., Topazh A.G. Matematicheskoye modelirovaniye i informatsionnyye tekhnologii v ekologii i prirodopol’zovanii [Mathematical modeling and information technologies in ecology and nature management]. Barnaul, Izd-vo Alt. un-ta, 2013. 277 p.

16. Federal’naya sluzhba gosudarstvennoy statistiki. Interaktivnaya vitrina [Federal State Statistics Service. Interactive showcase]. Available at: http://cbsd.gks.ru.

17. Royal Observatory of Belgium. Available at: http://www.astro.oma.be/en/.

18. Nagorskiy P.M., Ippolitov I.I., Kabanov M.V., Pkhalagov YU.A., Smirnov S.V. Variatsii meteorologicheskikh i atmosferno-elektricheskikh velichin v dymakh ot moshchnykh lesnykh pozharov. Solnechno-zemnyye svyazi i fizika predvestnikov zemletryaseniy, VI mezhdunarodnaya konferentsiya, 9-13 sentyabrya 2013 g., s. Paratunka, Kamchatskiy kray [Variations of meteorological and atmospheric-electrical quantities in the smoke from powerful forest fires. Solar-Earth Relations and Physics of Earthquake Harbingers. Proc. 6th Int. Conf., Sept. 9-13, 2013, Paratunka, Kamchatka Territory]. Petropavlovsk-Kamchatsky, 2013, pp.154-158.

19. Scherbov B.L., Lazareva E.V., Zhurkova I.S. Lesnyye pozhary i ikh posledstviya [Forest fires and their consequences]. Novosibirsk, GEO, 2015. 211 p.

20. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer, 2018, vol. 18, no. 8, pp. 471-484. doi: 10.1038/s41568-018-0015-6.

21. Viza D., Fudenberg H.H., Palareti A., Ablashi D., De Vinci C., Pizza G. Transfer factor: an overlooked potential for the prevention and treatment of infectious diseases. Folia Biol. (Praha), 2013, vol. 59, no. 2, pp. 53-67.

Full-text article (in Russian)