Comparison of biological efficiency of accelerated carbon ions and heavy recoils in Chinese hamster cells

«Radiation and Risk», 2019, vol. 28, No. 3, pp.96-106

DOI: 10.21870/0131-3878-2019-28-3-96-106

Authors

Koryakina E.V.1 – Senior Researcher, C. Sc., Biol. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036.
Tel.: (484) 399-72-76; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Potetnya V.I.1 – Senior Researcher, C. Sc., Biol.
Troshina M.V.1 – Researcher.
Efimova M.N.1 – Research Assistant.
Baykuzina R.M.1 – Lead. Engineer.
Koryakin S.N.1 – Head of Lab, C. Sc., Biol.
Lychagin A.A.1 – Head of Lab., C. Sc., Phys.-Math.
Pikalov V.A.2 – Lead. Engineer. IHEP.
Ulyanenko S.E.1 – Head of Dep., D.Sc., Biol. A. Tsyb MRRC.

1 A. Tsyb MRRC, Obninsk.
2 IHEP named by A. A. Logunov of NRC «Kurchatov Institute», Protvino.

Abstract

The article presents results of study of relative biological efficiency (RBE) of accelerated carbon ions at а plateau and the peak of the Bragg curve, as well as RBEs of C, N, O heavy recoils induced by 14.1 MeV neutrons in the cell monolayer irradiated in the absence of secondary charged particles equilibrium (SCPE). Normal (V-79 and CHO-K1) and tumor (B14-150) Chinese hamster cells were irradiated by accelerated carbon ions from the U-70 accelerator (NRC «Kurchatov Institute» – IHEP, Protvino, Russia) and 14.1 MeV neutrons from the portable neutron generator NG-14 (Dukhov Research Institute of Automatics, Moscow, Russia). To assess biological efficiency of different radiations clonogrnic survival assay was used. For carbon ions the survival curves were exponential at the Bragg peak and sigmoid at the Bragg curve plateau, while the curves for neutrons in the SCPE absence were exponential. The RBE values at 10% survival did not differ for different cell lines, they amounted to 1.3-1.4. RBEs of carbon ions in the plateau and the Bragg peak were 4.1 and 4.2, respectively. RBE of heavy recoils (C, N, O) was 3.1. RBEs of the accelerated carbon ions and heavy recoils were consistent with the well-known LET-RBE relationship. The used method for exposure of cell monolayers to 14.1 MeV neutrons in the SCPE absence allows researchers to study radiobiological effects under conditions simulating the Bragg peak of accelerated 12C ions.

Key words
LET, RBE, carbon ions, Bragg peak, neutrons, secondary charged particles, heavy recoils, Chinese hamster cells, clonogenic survival.

References

1. Kaprin A.D., Ulyanenko S.E. Adronnaya terapiya – tochki razvitiya [Hadron therapy – development point]. Medicina: celevye proekty – Medicine: Targeted Projects, 2016, no. 23, pp. 56-59.

2. Dale R.G., Jones B., Carabe-Fernandez A. Why more needs to be known about RBE effects in modern radiotherapy. Appl. Radiat. Isot., 2009, vol. 67, no. 3, pp. 387-392.

3. Fedorenko B.S., Shevchenko V.A., Snigireva G.P., Druzhinin S.V., Repina L.A., Novitskaia N.N., Akatov I.A. Cytogenetic studies of blood lymphocytes of cosmonauts after long-ter, space flights. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2000, vol. 40, no. 5, pp. 596-602. (In Russian).

4. Kaprin A.D., Galkin V.N., Zhavoronkov L.P., Ivanov V.K., Ivanov S.A., Romanko Yu.S. Sintez funda-mental’nykh i prikladnykh issledovaniy – osnova obespecheniya vysokogo urovnya nauchnykh rezul’tatov i vnedreniya ikh v meditsinskuyu praktiku [Synthesis of basic and applied research is the basis for providing high-level scientific results and their introduction in medical practice]. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 2, pp. 26-40.

5. Broerse J.J., Zoetelief J. Dose inhomogeneities for photons and neutrons near interfaces. Radiat. Prot. Dosim., 2004, vol. 112, no. 4, pp. 509-517.

6. Rini F.J., Hall E.J., Marino S.A. The oxygen enhancement ratio as a function of neutron energy with mam-malian cells in culture. Radiat. Res., 1979, vol. 78, no. 1, pp. 25-37.

7. Antipov Y.M., Britvich G.I., Ivanov S.V., Kostin M.Y., Lebedev O.P., Lyudmirskii E.A., Maksimov A.V., Pikalov V.A., Soldatov A.P., Khitev G.V., Ul'yanenko S.E., Lychagin A.A., Isaeva E.V., Beketov E.E., Troshina M.V. Transversally-flat dose field formation and primary radiobiological exercises with the carbon beam extracted from the U-70 synchrotron. Pribory i tekhnika eksperimenta – Instruments and Experimental Techniques, 2015, no. 4, pp. 552-561. (In Russian).

8. Ustroystvo dlya luchevoy terapii bystrymi neytronami nejtronami [Device for radiation therapy with fast neutrons]. Patent na izobretenie [Patent for invention], N 2442620, 20.02.2012. Avtory [Authors]: Lityaev V.M., Ulyanenko S.E., Gorbushin N.G. Available at: http://www.allpatents.ru (Accessed 12.02.2019).

9. Lychagin A.A., Koryakina E.V., Ulianenko S.E. Dozimetriya smeshannykh gamma-neytronnykh radiatsionnykh poley na malogabaritnykh generatorakh impul’snogo i nepreryvnogo neytronnogo izlucheniya [Some features of dosimetry and radiobiological reactions of impulse neutron irradiation]. Meditsinskaya fizika – Medical Physics, 2015, vol. 67, no. 3, pp. 15-23.

10. Solovev A.N., Stepanova U.A., Ulyanenko S.E., Chernukha A.E., Fedorov V.V. Geant 4-based framework for hadronic radiotherapy simulations. Int. J. Comput. Assist. Radiol. Surg., 2015, vol. 10, s. 1, p. 201.

11. Soloviev A.N. Komp'juternoe modelirovanie vzaimodejstvija ionizirujushhego izluchenija i veshhestva [Computer simulation of ionizing radiation and matter interaction]. Informatsionnye i telekommunikatsionnye tehnologii – Information and Telecommunications Technology, 2013, no. 20, pp. 25-33.

12. Govorun R.D. Cytogenetic damage and mutagenesis in mammalian and human cells induced by ionizing radiation with varying LET. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 1997, vol. 37, no. 4, pp. 539-548. (In Russian).

13. Furusawa Y., Fukutsu K., Aoki M., Itsukaichi H., Eguchi-Kasai K., Ohara H., Yatagai F., Kanai T., Ando K. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-Ion beams. Radiat. Res., 2000, vol. 154, no. 5, pp. 485-496.

14. Friedrich T., Scholz U., Elsässer T., Durante M., Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J. Radiat. Res., 2013, vol. 54, no. 3, pp. 494-514.

15. Koryakina E.V., Potetnya V.I., Klykov S.A., Pugachev R.M. Biologicheskaja effektivnost' nejtronov i al'fa-izluchenija s blizkoj LPЕ [The biological effectiveness of the neutrons and alpha-particles with similar LET]. Aktual'nye problemy gumanitarnyh i estestvennyh nauk – Actual Problems of the Humanities and Natural Sciences, 2013, vol. 59, no. 12, pp. 39-40.

16. Folkard M., Prise K.M., Vojnovic B., Davies S., Roper M.J., Michael B.D. The irradiation of V79 mammalian cells by protons with energies below 2 MeV. Part I: Experimental arrangement and measurements of cell survival. Int. J. Radiat. Biol., 1989, vol. 56, no. 3, pp. 221-237.

17. Koryakina E.V., Potetnya V.I., Ulyanenko S.E. Vliyaniye impul’snogo kharaktera neytronnogo izlucheniya s energiyey 14,5 MeV na reaktsiyu kletok mlekopitayushchikh [The influence of impulse 14.5 MeV neutron irradiation on mammalian cells reactions]. Meditsinskaya fizika – Medical Physics, 2015, vol. 68, no. 4, pp. 69-74.

18. Isaeva E.V., Beketov E.E., Koryakin S.N., Lychagin A.A., Ulianenko S.E. Sravneniye biologicheskoy effektivnosti impul’snogo i nepreryvnogo neytronnogo izlucheniya s energiyey 14 MeV na kul’ture kletok myshinoy melanomy B16 [Comparison of biological effectiveness of pulse and continuous radiation of 14 MeV neutrons on murine melanoma B-16 cell culture]. Radiatsiya i risk – Radiation and risk, 2012, vol. 21, no. 2, pp. 83-90.

19. Beketov E.E., Isaeva E.V., Koryakin S.N., Lychagin A.A., Ulyanenko S.E. Zavisimost' effektivnosti odnovremennogo vozdeystviya gamma-kvantov i neytronov s energiey 14 MeV ot vklada plotnoioniziruyushchego komponenta [The dependence of the efficiency of the simultaneous action of gamma rays and neutrons with 14 MeV the contribution plotnoioniziruyuschego component]. Radiatsiya i risk – Radiation and risk, 2012, vol. 21, no. 3, pp. 81-90.

Full-text article (in Russian)