Transcription factors as potential markers of carcinogenic effects of chronic exposure. Review

«Radiation and Risk», 2022, vol. 31, No. 4, pp.132-147

DOI: 10.21870/0131-3878-2022-31-4-132-147

Authors

Kodintseva E.A. – Researcher, Manager, C. Sc., Biol. URCRM. Contacts: 68A Vorovsky Str., Chelyabinsk, 454141, Russia. Tel.: +7(351) 232-79-22; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Urals Research Center for Radiation Medicine, FMBA of Russia, Chelyabinsk

Abstract

Chronic human exposure to ionizing radiation causes mainly damage to red bone marrow cells, that primarily affects T-cell part of the immunity. Increased incidence of cancer and cardio-vascular diseases in the affected people has been registered during long time. Mechanisms of the late radiation-induced immunity changes have not been sufficiently studied. Pathophysiological mechanisms of late effects of chronic exposure are unknown. The paper reviews the latest information on some tran-scription factors, among them NF-κB, JNK, Р38 and other, involved in cellular response to ionizing radiation. The main transcription factors, such as STAT3, GATA3, T-BOX, FOXР3, RORС and other, control T-lymphocytes differentiation. Location of some transcription factors and short description of their functions are given in the paper. The latest methods of the transcription factors research have been summarized, their advantages and disadvantages have been analyzed. Radiation effects on cells are mainly realized through stress-adaptive mechanism, this makes difficult to study cells response to ionizing radiation and mechanisms of the effects realization, especially delayed effects. Complex research of intracellular signal pathway in relation to genetic and receptor cells apparatus (Т-lymphocytes, performing regulatory functions, and cells effectors of antitumor immunity) will allow the future researches to find out mechanisms of late effects of ionizing radiation chronic exposure to a human, primarily carcinogenic effects.

Key words
the Techa River, chronic radiation exposure, long-term period, immune system, T-lymphocytes, transcription factors, mitogen-activated protein kinases, signaling pathways, T-lymphocyte differentiation, apoptosis, methods for studying transcription factors.

References

1. Baba J., Watanabe S., Saida Y., Tanaka T., Miyabayashi T., Koshio J., Ichikawa K., Nozaki K., Koya T., Deguchi K., Tan C., Miura S., Tanaka H., Tanaka J., Kagamu H., Yoshizawa H., Nakata K., Narita I. Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood, 2012, vol. 120, no. 12, pp. 2417-2427.

2. Muroyama Y., Nirschl T.R., Kochel C.M., Lopez-Bujanda Z., Theodros D., Mao W., Carrera-Haro M.A., Ghasemzadeh A., Marciscano A.E., Velarde E., Tam A.J., Thoburn C.J., Uddin M., Meeker A.K., Anders R.A., Pardoll D.M., Drake C.G. Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment. Cancer Immunol. Res., 2017, vol. 5, no. 11, pp. 992-1004.

3. Wirsdörfer F., Jendrossek V. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung. Front. Immunol., 2016, vol. 7, pp. 591. DOI: 10.3389/fimmu.2016.00591.

4. Macaeva E., Saeys Y., Tabury K., Janssen A., Michaux A., Benotmane M.A., De Vos W.H., Baatout S., Quintens R. Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry. Sci. Rep., 2016, vol. 6, pp. 19251. DOI: 10.1038/srep19251.

5. Li J.F., Xie L.J., Qin L.P., Liu Y.F., Zhang T.J., Huang Y., Cheng M.H. Apoptosis gene reprograming of human peripheral blood mononuclear cells induced by radioiodine-131 (131I) irradiation. Indian J. Med. Res., 2019, vol. 149, no. 5, pp. 627-632.

6. Nikitakia Z., Mavragania I.V., Laskaratoua D.A., Gika V., Moskvin V.P., Theofilatos K., Vougas K., Stewart R.D., Georgakilas A.G. Systemic mechanisms and effects of ionizing radiation: a new ‘old’ paradigm of how the bystanders and distant can become the players. Semin. Cancer Biol., 2016, vol. 37-38, pp. 77-95.

7. ICRP, 2012. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann. ICRP, 2012, vol. 41, no. 1/2, pp. 1-322.

8. Consequences of radioactive contamination of the Techa river. Ed.: Prof. A.V. Akleev. Chelyabinsk, Kniga, 2016. 400 p. (In Russian).

9. Ahmed R., Roger L., Costa del Amo P., Miners K.L., Jones R.E., Boelen L., Fali T., Elemans M., Zhang Y., Appay V., Baird D.M., Asquith B., Price D.A., Macallan D.C., Ladell K. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep., 2016, vol. 17, no. 11, pp. 2811-2818.

10. Hei T.K., Zhao Y., Zhou H., Ivanov V.N. Mechanism of radiation carcinogenesis: role of the TGFBI gene and the inflammatory signaling cascade. Adv. Exp. Med. Biol., 2011, vol. 720, pp. 163-170.

11. Schaue D., Kachikwu E.L., McBride W.H. Cytokines in radiobiological responses: a review. Radiat. Res., 2012, vol. 178, no. 6, pp. 505-523.

12. Azzam E.I., Jay-Gerin J.-P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 2012, vol. 327, no. 1-2, pp. 48-60.

13. Tang F.R., Loke W.K. Molecular mechanisms of low dose ionizing radiation induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int. J. Radiat. Biol., 2014, vol. 91, no. 1, pp. 1-68.

14. Khaitov R.M., Akleyev A.V., Kofiadi I.A. Individual radiosensitivity and immunity: national guidelines. Chelyabinsk, Kniga, 2018. 216 p. (In Russian).

15. Human radiosensitivity: Report of the independent Advisory Group on Ionising Radiation. London, Health Protection Agency Radiation, Chemical and Environmental Hazards, 2013. 164 p.

16. Zhang Y., Xu M., Zhang X., Chu F., Zhou T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carci-noma cells. Oncol. Lett., 2018, vol. 15, pp. 7537-7544.

17. Sabapathy K., Hu Y., Kallunki T., Schreiber M., David J.P., Jochum W., Wagner E.F., Karin M. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol., 1999, vol. 9, no. 3, pp. 116-125.

18. Yu H. Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin. J. Cancer Res., 2012, vol. 24, no. 2, pp. 83-89.

19. Zhukov A.S., Belousova I.E., Samtsov A.V. Immunological and molecular genetic mechanisms of the de-velopment of mycosis fungoides. Vestnik dermatologii i venerologii – Bulletin of Dermatology and Venerology, 2015, no. 4, pp. 42-50. (In Russian).

20. Netchiporouk E., Litvinov I.V., Moreau L., Gilbert M., Sasseville D., Duvic M. Deregulation in STAT sig-naling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle, 2014, vol. 13, no. 21, pp. 3331-3335.

21. Vainchenker W., Dusa A., Constantinescu S.N. AKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Sem. Cell Dev. Biol., 2008, vol. 19, pp. 385-393.

22. Murray P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol., 2007, vol. 178, pp. 2623-2629.

23. Oweida A.J., Darragh L., Phan A., Binder D., Bhatia S., Mueller A., Van Court B., Milner D., Raben D., Woessner R., Heasley L., Nemenoff R., Clambey E., Karam S.D. STAT3 modulation of regulatory T cells in response to radiation therapy in head and neck cancer. J. Natl. Cancer Ins., 2019, vol. 111, no. 12, pp. 1339-1349.

24. Zhou G., Xu Y., He B., Ma R., Wang Y., Chang Y., Xie Y., Wu L., Huang J., Xiao Z. Ionizing radiation modu-lates vascular endothelial growth factor expression through STAT3 signaling pathway in rat neonatal primary astrocyte cultures. Brain and Behav., 2020, vol. 10, pp. e01529. DOI: 10.1002/brb3.1529.

25. Ryan J.L. Ionizing radiation: the good, the bad, and the ugly. J. Invest. Dermatol., 2012, vol. 132, pp. 985-993.

26. Gao H., Dong Z., Gong X., Dong J., Zhang Y., Wei W., Wang R., Jin S. Effects of various radiation doses on induced T-helper cell differentiation and related cytokine Secretion. J. Radiat. Res., 2018, vol. 59, no. 4, pp. 395-403.

27. Tang Y., Chen X., Zhang Y., Tang Z., Zhuo M., Li D., Wang P., Zang G., Yu Y. Fusion protein of tapasin and hepatitis B core antigen 1827 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice. Mol. Med. Rep., 2014, vol. 9, pp. 1171-1178.

28. Xiang L., Rehm K.E., Marshall G.J. Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants. Mol. Immunol., 2014, vol. 60, pp. 129-134.

29. Singh R., Miao T., Symonds A., Omodho B., Li S., Wang P. Egr2 and 3 inhibit T-betmediated IFN- production in T cells. J. Immunol., 2017, vol. 198, no. 11, pp. 4394-4402.

30. Lee W., Lee G.R. Transcriptional regulation and development of regulatory T-cells. Exp. Mol. Med., 2018, vol. 50, no. 3, pp. e456. DOI: 10.1038/emm.2017.313.

31. Nakatsukasa H., Oda M., Yin J., Chikuma S., Ito M., Koga-Iizuka M., Someya K., Kitagawa Y., Ohkura N., Sakaguchi S., Koya I., Sanosaka T., Kohyama J., Tsukada Y.-I., Yamanaka S., Takamura-Enya T., Lu Q., Yoshimura A. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression. Int. Immunol., 2019, vol. 31, no. 5, pp. 335-347.

32. Emel S., Mehmet S. Epigenetical targeting of the FOXP3 gene by S-adenosylmethionine diminishes the suppressive capacity of regulatory T cells ex vivo and alters the expression profiles. J. Immunother., 2019, vol. 42, no. 1, pp. 11-22.

33. Beauford S.S., Kumari A., Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol., 2020, vol. 21, pp. 18. DOI: 10.1186/s12865-020-00349-w.

34. Cao M., Cabrera R., Xu Y., Liu C., Nelson D. Different radiosensitivity of CD4+ CD25+ regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int. J. Radiat. Biol., 2011, vol. 87, no. 1, pp. 71-80.

35. Gremy O., Benderitter M., Linard C. Acute and persisting Th2-like immune response after fractionated colorectal gamma-irradiation. World J. Gastroenterol., 2008, vol. 14, no. 46, pp. 7075-7085.

36. Jasiulionis M.G. Abnormal epigenetic regulation of immune system during aging. Front. Immunol., 2018, vol. 9, pp. 197. DOI: 10.3389/fimmu.2018.00197.

37. Korn T., Bettelli E., Oukka M, Kuchroo V.K. IL-17 and Th17 cells. Annu. Rev. Immunol., 2009, vol. 27, pp. 485-517.

38. Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., Cua D.J., Littman D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, vol. 126, no. 6, pp. 1121-1133.

39. Chen Z., Lin F., Gao Y., Li Z., Zhang J., Xing Y., Deng Z., Yao Z., Tsun A., Li B. FOXP3 and RORt: transcriptional regulation of Treg and Th17. Int. Immunopharmacol., 2011, vol. 11, no. 5, pp. 536-542.

40. Cai J.-L., Du L., Ma Q., Pan X., Yang X., Xiao F., Cui Y. Characteristics and significance of change in Treg/Th17 balance in rats with combined trauma and -radiation. Med. J. Chin. People's Lib. Army, 2013, vol. 38, no. 1, pp. 19-22.

41. Bessout R., Demarquay C., Moussa L., René A., Doix B., Benderitter M., Sémont A., Mathieu N. TH17 predominant T-cell responses in radiation-induced bowel disease are modulated by treatment with adipose-derived mesenchymal stromal cells. J. Pathol., 2015, vol. 237, no. 4, pp. 435-446.

42. Riffelmacher T., Richter F.C., Simon A.K. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy, 2018, vol. 14, no. 2, pp. 199-206.

43. Sanli T., Rashid A., Liu C., Harding S., Bristow R.G., Cutz J.-C., Singh G., Wright J., Tsakiridis T. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys., 2010, vol. 78, no. 1, pp. 221-229.

44. Wang Z., Chen Z., Jiang Z., Luo P., Liu L., Huang Y., Wang H., Wang Y., Long L., Tan X., Liu D., Jin T., Wang Y.I., Wang Y., Liao F., Zhang C., Chen L., Gan Y., Liu Y., Yang F., Huang C., Miao H., Chen J., Cheng T., Fu X., Shi C. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun., 2019, vol. 10, pp. 2538. DOI: 10.1038/s41467-019-10386-8.

45. Stone K.L., Elliott J.I., Peterson G., McMurray W., Williams K.R. Reversed-phase high-performance liquid chromatography for fractionation of enzymatic digests and chemical cleavage products of proteins. Methods Enzymol., 1990, vol. 193, pp. 389-412.

46. Marcotte E.M. How do shotgun proteomics algorithms identify proteins? Nat. Biotechnol., 2007, vol. 25, pp. 755-757.

47. Codorean E., Nichita C., Albulescu L., Răducan E., Popescu I.D., Lonită A.C., Albulescu R. Correlation of XMAP and ELISA cytokine profiles; development and validation for immunotoxicological studies in vitro. Roum. Arch. Microbiol. Immunol., 2010, vol. 69, no. 1, pp. 13-19.

48. O'Farrell P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 1975, vol. 250, no. 10, pp. 4007-4021.

49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellu-lose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 1979, vol. 76, no. 9, pp. 4350-4354.

50. Schuerwegh A.J., Stevens W.J., Bridts C.H., De Clerck L.S. Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6, and tumor necrosis factoralpha in monocytes. Cytometry, 2001, vol. 46, no. 3, pp. 172-176.

51. Baksh M.M., Kussrow A.K., Mileni M., Finn M.G., Bornhop D.J. Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nat. Biotechnol., 2011, vol. 29, no. 4, pp. 357-360.

52. Ivanov A.S., Medvedev A., Ershov P., Molnar A., Mezentsev Y., Yablokov E., Kaluzhsky L., Gnedenko O., Buneeva O., Haidukevich I., Sergeev G., Lushchyk A., Yantsevich A., Medvedeva M., Kozin S., Popov I., Novikova S., Zgoda V., Gilep A., Usanov S., Lisitsa A., Archakov A. Protein interactomics based on direct molecular fishing on paramagnetic particles: practical realization and further SPR validation. Proteomics, 2014, vol. 14, pp. 2261-2274.

53. Yevshin I., Sharipov R., Valeev T., Kel A., Kolpakov F. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res., 2017, vol. 45, no. D1, pp. D61-D67.

54. Rubina A.Y., Dementieva E.I., Stomakhin A.A., Darii E.L., Pan'kov S.V., Barsky V.E., Ivanov S.M., Konovalova E.V., Mirzabekov A.D. Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques, 2003, vol. 34, no. 5, pp. 1008-1014.

55. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, vol. 249, no. 4968, pp. 505-510.

56. Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, vol. 346, pp. 818-822.

57. Hathout Y., Brody E., Clemens P.R., Cripe L., DeLisle R.K., Furlong P., Gordish-Dressman H., Hache L., Henricson E., Hoffman E.P., Kobayashi Y.M., Lorts A., Mah J.K., McDonald C., Mehler B., Nelson S., Nikrad M., Singer B., Steele F., Sterling D., Sweeney H.L., Williams S., Gold L. Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 23, pp. 7153-7158.

58. Voller A., Bidwell D., Huldt G., Engvall E. A microplate method of enzyme-linked immunosorbent assay and its application to malaria. Bull. World Health Organ., 1974, vol. 51, no. 2, pp. 209-211.

Full-text article (in Russian)