Значимость персональных клинико-диагностических показателей при оценке побочного радиационного воздействия для больных раком щитовидной железы, получающих радиойодтерапию

DOI: 10.21870/0131-3878-2021-30-2-101-112

Хвостунов И.К.1, Крылов В.В.1, Родичев А.А.1, Шепель Н.Н.1, Коровчук О.Н.1, Кочетова Т.Ю.1, Пятенко В.С.1,2, Хвостунова Т.И.1, Жиронкина А.С.1

«Радиация и риск». 2021. Том 30. № 2, с.101-112

Сведения об авторах

Хвостунов И.К. – зав. лаб., д.б.н. Контакты: 249035, Калужская обл., Обнинск, ул. Королёва, 4. Тел.: (484) 399-73-92; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. .
Крылов В.В. – зав. отдел., д.м.н.
Родичев А.А. – врач-радиолог, к.м.н.
Шепель Н.Н. – ст. науч. сотр., к.б.н.
Коровчук О.Н. – науч. сотр.
Кочетова Т.Ю. – науч. сотр.
Хвостунова Т.И. – науч. сотр.
Жиронкина А.С. – науч. сотр. МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России.
Пятенко В.С. – вед. науч. сотр., к.б.н. МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России, ФГБУН ИБФ им. Н.М. Эмануэля РАН.

1 МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России, Обнинск
2 ФГБУН Институт биохимической физики им. Н.М. Эмануэля РАН, Москва

Аннотация

Радиойодтерапия (РЙТ) представляет собой наиболее известную область терапевтического применения радионуклидов. Метод терапии препаратом на основе 131I в сочетании с хирургическим лечением является «золотым стандартом» в лечении больных дифференцированным раком щитовидной железы (ДРЩЖ), а при наличии отдалённых метастазов он не имеет альтернативы. Несмотря на адресное воздействие радиоактивного йода на патологические очаги, при РЙТ отмечается побочное внутреннее облучение здоровых органов и тканей. В связи с этим необходима надёжная оценка побочного облучения с учётом индивидуальных особенностей пациентов, поскольку известно, что величина побочной дозы значительно варьирует от пациента к пациенту. По этой причине выявление значимости персональных клинико-диагностических показателей пациентов в отношении побочного облучения всего тела является важной и актуальной задачей. В данном аспекте существенное значение приобретает цитогенетическое обследование онкологических пациентов при помощи анализа хромосомных аберраций в лимфоцитах периферической крови. Определённые виды хромосомных аберраций являются специфическими радиационными маркерами, наличие которых однозначно свидетельствует о радиационном воздействии, а по частоте их встречаемости можно достоверно оценить величину поглощённой дозы. В настоящей работе на основе цитогенетического обследования группы из 38 больных ДРЩЖ было выполнено исследование значимости влияния их клинико-диагностических показателей на индукцию радиационных маркеров в лимфоцитах крови. В результате анализ корреляционной матрицы соотношения прироста частоты стабильных и нестабильных маркеров после однократного курса РЙТ и исследованных показателей не показал значимой зависимости на уровне R>0,3 ни от одного из них. Вместе с тем, между частотой радиационных маркеров как до, так и после РЙТ была обнаружена высокая степень зависимости от суммарной введённой пациенту активности 131I за все предшествующие курсы РЙТ на уровне R>0,7 для нестабильных и на уровне R>0,8 для стабильных маркеров.

Ключевые слова
ядерная медицина, рак щитовидной железы, радиофармпрепарат, радиойодтерапия, побочное облучение, радиационный маркер, цитогенетика, биодозиметрия, хромосомные аберрации, лимфоциты.

Список цитируемой литературы

1. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность) /под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 250 с.

2. Крылов В.В., Гарбузов П.И., Кочетова Т.Ю., Шуринов А.Ю., Бородавина Е.В. Терапевтическая радиология: национальное руководство. Глава 34. Радионуклидная терапия /под ред. А.Д. Каприна, Ю.С. Мардынского. М.: ГЭОТАР-Медиа, 2018. С. 637-665.

3. Silberstein E.B. Radioiodine: the classic theranostic agent //Semin. Nucl. Med. 2012. V. 42, N 3. P. 164-170.

4. Khvostunov I.K., Saenko V.A., Krylov V.V., Rodichev A.A., Yamashita S. Cytogenetic biodosimetry and dose-rate effect after radioiodine therapy for thyroid cancer //Radiat. Environ. Biophys. 2017. V. 56, N 3. P. 213-226.

5. Хвостунов И.К., Крылов В.В., Родичев А.А., Шепель Н.Н., Коровчук О.Н., Пятенко В.С., Хвосту-нова Т.И. Доза общего облучения при лечении дифференцированного рака щитовидной железы радиоактивным йодом //Радиационная биология. Радиоэкология. 2017. Т. 57, № 5. С. 471-485.

6. Robbins R.J., Schlumberger M.J. The evolving role of 131I for the treatment of differentiated thyroid carcinoma //J. Nucl. Med. 2005. V. 46, N 1. P. 28S-37S.

7. Хвостунов И.К., Крылов В.В., Родичев А.А., Шепель Н.Н., Коровчук О.Н., Кочетова Т.Ю., Пятенко В.С., Хвостунова Т.И. Оценка побочного радиационного эффекта радиойодтерапии для детей и подростков на основе цитогенетического обследования //Достижения и перспективы детской онкологии: Тезисы VII съезда детских онкологов России с международным участием, Москва, 25-26 октября 2018 г. //Онкопедиатрия. 2018. Т. 5, № 3 (Приложение). С. 15.

8. Brill A.B., Stabin M., Bouville A., Ron E. Normal organ radiation dosimetry and associated uncertainties in nuclear medicine, with emphasis on Iodine-131 //Radiat. Res. 2006. V. 166, N 1. P. 128-140.

9. Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer //Thyroid. 2009. V. 19, N 12. P. 1381-1391.

10. Kulkarni K., Van Nostrand D., Atkins F., Aiken M., Burman K., Wartofsky L. The frequency with which empiric amounts of radioiodine “over-“ or “under-“ treat patients with metastatic well-differentiated thyroid cancer //Thyroid. 2006. V. 16, N 1. P. 1-5.

11. Stabin M.G., Sharkey R.M., Siegel J.A. RADAR commentary: evolution and current status of dosimetry in nuclear medicine //J. Nucl. Med. 2011. V. 52, N 7. P. 1156-1161.

12. Verburg F.A., Lassmann M., Mäder U., Luster M., Reiners C., Hänschei H. The absorbed dose to the blood is a better predictor of ablation success than the administered 131-I activity in thyroid cancer patients //Eur. J. Nucl. Med. Mol. Imaging. 2011. V. 38, N 4. P. 673-680.

13. Benua R.S., Leeper R.D. A method and rationale for treating thyroid carcinoma with the largest safe dose of I-131 //Frontiers of thyroidology /Еds.: G.A. Meideros-Neto, E. Gaitan. V. II. New York: Plenum, 1986. P. 1317-1321.

14. De Keizer B., Hoekstra A., Konijnenberg M.W. Bone marrow dosimetry and safety of high 131I activities given after recombinant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer //J. Nucl. Med. 2004. V. 45, N 9. P. 1549-1554.

15. Калистратова В.С., Беляев И.К., Жорова Е.С., Нисимов П.Г., Парфенова И.М., Тищенко Г.С., Цапков М.М. Радиобиология инкорпорированных радионуклидов /под ред. В.С. Калистратовой. М.: ФМБЦ им. А.И. Бурназяна ФМБА России, 2012. 464 с.

16. Willegaignon J., Malvestiti L.F., Guimarães M.I.C., Sapienza M.T., Endo I.S., Neto G.C., Marone M., Sordi G.-M.A.A. 131-I effective half-life (Teff) for patients with thyroid cancer //Health Phys. 2006. V. 91, N 2. P. 119-122.

17. Cytogenetic analysis for radiation dose assessment: a manual. Technical Reports Series IAEA N 405. Vienna: IAEA, 2001. 127 p.

18. Herate C., Sabatier L. Retrospective biodosimetry techniques: focus on cytogenetics assays for individuals exposed to ionizing radiation //Mutat. Res. 2020. V. 783. P. 108287. DOI: 10.1016/j.mrrev.2019.108287.

Полная версия статьи