Principles of mathematical modeling of combined effects in biology and medicine. Review of the literature

«Radiation and Risk», 2015, vol. 24, No. 1, pp.61-73

Authors

Zhurakovskaya G.P. – Lead. Researcher, D.Sc., Biol., A. Tsyb MRRC, Obninsk. Contacts: 4 Korolyov str., Obninsk, Kaluga Region, Russia, 249036. Tel. (484) 399-70-08; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Petin V.G. – Head of Lab., D.Sc., Biol., A. Tsyb MRRC, Obninsk.

Abstract

Using the combined action of different factors on biological objects with different levels of genome organization in biology and medicine is now widespread. Increased attention to this problem was paid due to publications on importance of synergistic interactions between agents leading to increase in the observed effect. New knowledge identified the need to consider the qualitative nature of the interaction, as well as to quantify the value of synergy. In this regard, a large number of studies including mathematical modeling of combined effects of ionizing radiation and different physical and chemical agents were published in the literature. The continuation of this work was mathematical modeling of interactions between different therapeutic agents. The application of mathematical models may be a significant contribution to the development of new ideas in utilization of combined chemical therapy by means of predicting the overall effect. The purpose of this review is to present a diversity of mathematical models of combined effects produced by various agents on biological objects and propose a modern vision of its application in biology and medicine for prediction of effects from combining different therapeutic agents.

Key words
Mathematical modeling, combined effect of synergism, antagonism, optimization, forecasting, ionizing radiation, drugs, radiobiology, medicine, combination of drugs.

References

1. Sucher N.J. Searching for synergy in silico, in vitro and in vivo. Synergy, 2014, vol. 1, no. 1, pp. 30-43.

2. Vilenchik M.M. Radiobiologicheskie effekty i okruzhayushchaya sreda [Radiobiological effects and environment]. Moscow, Energoatomizdat, 1991. 160 p.

3. Tsimmer K.G. Problemy kolichestvennoy radiobiologii [Problems quantitative radiobiology]. Moscow, Gosatomizdat, 1962. 100 p.

4. Timofeev-Resovskiy N.V., Ivanov V.I., Korogodin V.I. Primenenie printsipa popadaniya v radiobiologii [Applying the principle of getting in radiobiology]. Moscow, Atomizdat, 1968. 228 p.

5. Khug O., Kellerer A. Stokhasticheskaya radiobiologiya [Stochastic radiobiology]. Moscow, Atomizdat, 1969. 183 p.

6. Dertinger G., Yung Kh. Molekulyarnaya radiobiologiya [Molecular Radiobiology]. Moscow, Atomizdat, 1973. 248 p.

7. Kapul'tsevich Yu.G. Kolichestvennye zakonomernosti luchevogo porazheniya kletok [Quantitative regularities of radiation damage cells]. Moscow, Atomizdat, 1978. 230 p.

8. Ivanov V.K. Matematicheskoe modelirovanie i optimizatsiya luchevoy terapii opukholey [Mathematical modeling and optimization of radiation therapy of tumors]. Moscow, Energoatomizdat, 1986. 144 p.

9. Dugan V.L. A kinetic analysis of spore inactivation in a composite heat and gamma radiation environment. Space Life Sciences, 1971, vol. 2, no. 3, pp. 498-505.

10. Trujillo R., Dugan V.L. Synergistic inactivation of viruses by heat and ionizing radiation. Biophysical J., 1972, vol. 12, no. 2, pp. 92-113.

11. Reynolds M.C., Brannen J.F. Thermal enhancement of radiosterilization. In: Rad. Preservation of Food. Vienna, IAEA, 1973, pp. 165-170.

12. Kappos A., Pohlit W.A. A cybernetic model for radiation reaction in living cells. Sparsely-ionising radiation: stationary cells. Int. J. Radiat. Biol., 1972, vol. 22, no. 1, pp. 51-65.

13. Brannen J.P. A temperature- and dose rate-dependent model for the kinetics of cellular response to ionising radiation. Radiat. Res., 1975, vol. 62, no. 3, pp. 379-387.

14. Jain V.K., Pohlit W. Biocybirnetics of Cancer. Optimizing Cancer Treatment with Ionizing Radiations. Banglore, INSDOC, 1986. 207 p.

15. Barendsen G.W. Interaction of the LET dependence of radiation induced lethal and sublethal lesions in mammalian cells. In: Biological Modelling of Radiation Effects. Eds.: Chadwick K.H., Mschini G. and Varma M.N. Bristol, Adam Hilger, 1992, pp. 13-20.

16. Curtis S.B. Application of the LPL model to mixed radiations. Eds.: Chadwick K.H., Mschini G. and Varma M.N. Bristol, Adam Hilger, 1992, pp. 21-28.

17. Zaider M., Branner D.J. The application of the principle of «dual radiation action» in biophysical modeling. Eds.: Chadwick K.H., Mschini G. and Varma M.N. Bristol, Adam Hilger, 1992, pp. 37-46.

18. Leenhouts H.P., Chadwick K.H. An analysis of synergistic sensitization. Brit. J. Cancer, 1978, vol. 37, Suppl. III, pp. 198-201.

19. Chadwick K.H., Leenhouts H.P. The Molecular Theory of Radiation Biology. Berlin-Heidelberg-New York, Springer Verlag, 1981. 271 p.

20. Obaturov G.M., Semenov V.P. O molekulyarnoy teorii Chadvika i Linkhautsa [On the molecular theory Chadwick and Linhautsa]. Radiobiologiya – Radiology, 1980, vol. 20, no. 2, pp 163-168.

21. Tobias C.A., Blakely E.A., Ngo F.Q.H., Yang T.C.H. The repair-misrepair model of cell survival. In: Radiation Biology and Cancer Research. Eds.: Meyn A., Withers R. 1978, pp. 195-230.

22. Tobias C.A. The repair-misrepair model in radiobiology: comparison to other model. Radiat. Res., 1985, vol. 104, no. 2, pp. 77-92.

23. Ben-Hur E. Mechanisms of the synergistic interaction between hyperthermia and radiation in cultured mammalian cells. J. Radiat. Res., 1976, vol. 17, no. 2, pp. 92-98.

24. Ben-Hur E., Elkind M.M. DNA damage and repair in hyperthermic mammalian cells: relation to enhanced cell killing. In: Radiation Research Biomedical, Chemical and Physical Perspectives. Academ. Press, 1975, pp. 703-717.

25. Ben-Hur E., Elkind M.M., Sronk B.V. Thermaly enchanced radioresponse of cultured Chinese hamster cells: inhibition of sublethal damage and enchancement of lethal damage. Radiat. Res., 1974, vol. 58, no. 1, pp. 38-51.

26. Dikomey E. Different cytotoxic effects of hyperthermia below and above 43 oC alone or combined with X irradiation. Radiat. Res., 1981, vol. 88, no. 2, pp. 489-501.

27. Ager D.D., Haynes R.H. Mathematical description of the interactions between cellular inactivating agents. Radiat. Res., 1987, vol. 110, no. 1, pp. 129-141.

28. Haynes R.H. Molecular localization of radiation damage relevant to bacterial inactivation. In: Physical Processes in Radiation Biology. New York, Academic Press, 1964, pp. 51-72.

29. Loshek D.D., Orr J.S., Solomonidis E. Interaction of hyperthermia and radiation: a survival model. In: Cancer Therapy by Hyperthermia and Radiation. Eds.: Streffer C. et al. Baltimore-Munich, Urban&Schwarzenberg, 1978, pp. 211-213.

30. Zaider M., Rossi H.H. The Synergistic effects of different radiations. Radiat. Res., 1980, vol. 83, no. 3, pp. 732-739.

31. Kellerer A.M., Rossi H.H. A generalized formulation of dual radiation action. Radiation Research, 1978, vol. 75, pp. 471-488.

32. Komarov V.P., Petin V.G. Matematicheskaya model' odnovremennogo vozdeystviya ioniziruyushchey radiatsii i gipertermii [A mathematical model of simultaneous exposure to ionizing radiation and hyperthermia]. Radiobiologiya – Radiobiologiya, 1983, vol. 23, no. 4, pp. 484-488.

33. Petin V.G., Komarov V.P. Kolichestvennoe opisanie modifikatsii radiochuvstvitel'nosti [A quantitative description of the modification radiosensitivity]. Moscow, Energoatomizdat, 1989. 190 p.

34. Petin V.G., Zhurakovskaya G.P., Komarova L.N. Radiobiologicheskie osnovy sinergicheskikh vzaimodeystviy v biosfere [Radiobiological synergistic ways in the biosphere]. Moscow, GEOS, 2012. 219 p.

35. Ritz C., Streibig J. C. From additivity to synergism – A modelling perspective. Synergy, 2014, vol. 1, no. 1, pp. 22-29.

36. Jonker D. M., Sandra A.G., Visser P.H., van der Graaf R.A., Voskuyl M.D. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacology & Therapeutics, 2005, vol. 106, no. 1, pp. 1-18.

37. Jones L.B., Secomb T.W., Dewhirst M.W., El-Kareh A.W. The additive damage model: A mathematical model for cellular responses to drug combinations. Journal of Theoretical Biology, 2014, vol. 357, pp. 10-20.

38. Chou T-C., Talalay P. Analysis of combined drug effects: a new look at very old problem. Trends Pharmacol. Sci., 1983, vol. 4, pp. 450-454.

39. Boik J.C., Newman R.A. A classification model to predict synergism/antagonism of cytotoxic mixtures using protein-drug docking scores. BMC Pharmacology, 2008, vol. 29, pp. 8-13.

40. Boik J.C., Newman R.A., Boik R.J. Quantifying synergism/antagonism using nonlinear mixed-effects modeling: a simulation study. Stat. Med., 2008, vol. 27, no. 7, pp. 1040-1061.

41. Tao Y.S., Guo Q. A mathematical model of combined therapies against cancer using viruses and inhibitors. Science in China Series A: Mathematics, 2008, vol. 51, no. 12, pp. 2315-2329.

42. Gruvez B., Dauphin A., Tod M. A mathematical model for paroxitin antidepressant effect time and its interaction with pindolol. J. Pharmacokinet. Pharmacodyn., 2005, vol. 32, no. 5-6, pp. 663-683.

43. Kamangira B., Nyamugure P., Magombedze G. A theoretical mathematical assessment of the effectiveness of coartemether in the treatment of Plasmodium falciparum malaria infection. Mathematical Biosciences, 2014, vol. 256, pp. 28-41. 44. Morel B.F., Burke M.A., Kalagnanam J., McCarthy S. A., Tweardy D.J., Morel P.A. Making sense of the combined effect of interleukin-2 and interleukin-4 on lymphocytes using a mathematical model. Bulletin of Mathematical Biology, 1996, vol. 58, no. 3, pp. 569-594.

45. Hu Y., Li D., Han X. Analysis of combined effects of nonylphenol and Monobutil phthalate on rat Sertoli cells applying two mathematical models. Food and Chemical Toxicology, 2012, vol. 50, pp. 457-463.

46. Tallarida R.J. Quantitative methods for assessing drug synergism. Genes & Cancer, 2011, vol. 2, no. 11, pp. 1003-1008.

Full-text article (in Russian)