Cytotoxic effects of the combined action of ionizing radiation and doxorubicin conjugates with dendritic polymer and a vector protein to tumor cells in vitro

«Radiation and Risk», 2016, vol. 25, No. 3, pp.46-56

DOI: 10.21870/0131-3878-2016-25-3-46-56

Authors

Zamulaeva I.A. – Head of Dep., D.Sc., Biol., Prof. A. Tsyb MRRC, Obninsk, Russia. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: +7 (484) 399-71-88; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Churyukina K.A. – Research Assistant Tsyb MRRC, Obninsk, Russia.
Matchuk O.N. – Researcher. A. Tsyb MRRC, Obninsk, Russia.
Nikolskaja E.D. – Lab. Assistant. A. Tsyb MRRC, Obninsk, Russia.
Makarenko S.A. – Researcher, MD, Prof. A. Tsyb MRRC, Obninsk, Russia.
Zhunina O.A.1 – Senior Researcher, C. Sc., Biol. Autonomous Noncommercial Organization «Institute of Molecular Diagnostics», Moscow.
Kondrasheva I.G.1 – Director for Innovative Development, C. Sc., Biol. Autonomous Noncommercial Organization «Institute of Molecular Diagnostics», Moscow.
Severin E.S.1 – General Director, D.Sc., Chem., PhD, Corresponding Member of RAS. Autonomous Noncommercial Organization «Institute of Molecular Diagnostics», Moscow.

Abstract

The dendritic polymers (dendrimers) are perspective nanocontainers for targeted transport of anticancer drugs to the target cells. However, the combined effect of ionizing radiation and the dendrimers conjugated with anticancer drugs and vector molecules, are virtually unexplored, so this is the main goal of the study. We used polyamideamine (PAMAM) dendrimers of the second generation (G2), covalently conjugated with doxorubicin (Dox) and a vector protein (alpha-fetoprotein recombinant third domain – 3D).The cytotoxic effects and intracellular accumulation of Dox were studied after 24 hours of incubation of the cells (breast adenocarcinoma MCF-7 and MCF-7/MDR1 cells) with free Dox, unmodified G2 dendrimers, loaded with Dox (G2-Dox), or conjugates of dendrimers with the vector protein and Dox (3D-G2-Dox) only or in combination with ionizing radiation. For MCF-7 line using Dox conjugates with dendrimers in combination to irradiation was not effective because conjugates did not increase the cytotoxic effects of radiation exposure. For MCF-7/MDR1 line synergistic effects were shown after the combined treatment with G2-Dox or 3D-G2-Dox with dendrimers and radiation. Thus, in terms of overall cytotoxic effects on stable tumor cell lines, using the studied conjugates of Dox with dendrimers is justified only in combination with irradiation and only in the case of high expression of P-glycoprotein, which determines the multidrug resistance of cancer cell line MCF-7/MDR1.

Key words
doxorubicin, dendrimers, ionizing radiation, cytotoxicity, alpha-fetoprotein, cancer cells, breast cancer, MCF-7, MCF-7/MDR1, flow cytometry.

References

1. Hagtvet E., Røe K., Olsen D.R. Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer xenografts. Radiat. Oncol., 2011, vol. 6, p. 135.

2. Peters T., Grunewald C., Blaickner M., Ziegner M., Schütz C., Iffland D., Hampel G., Nawroth T., Langguth P. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy. Radiat. Oncol., 2015, vol. 10, p. 52.

3. Jung J., Jeong S.Y., Park S.S., Shin S.H., Ju E.J., Choi J., Park J., Lee J.H., Kim I., Suh Y.A., Hwang J.J., Kuroda S., Lee J.S., Song S.Y., Choi E.K. A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int. J .Oncol., 2015, vol. 46, no. 3, pp. 1268-1274.

4. Kato S., Kimura M., Miwa N. Enhanced radiosensitization by the cationic liposome-encapsulated thymidine analogue BrdU through the increased intracellular BrdU-uptake on human melanoma as compared to anionic or nonionic liposomal or free BrdU. J. Biomed. Nanotechnol., 2014, vol. 10, no. 11, pp. 3280-3290.

5. Gillies E.R., Fréchet J.M. Dendrimers and dendritic polymers in drug delivery. Drug. Discovery Today, 2005, vol. 10, no. 1, pp. 35-43.

6. Bonner J.A., Lawrence T.S. Doxorubicin decreases the repair of radiation-induced DNA damage. Int. J. Radiat. Biol., 1990, vol. 57, no. 1, pp. 55-64.

7. Lawrence T.S., Blackstock A.W., McGinn C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Seminars in Radiation Oncology, 2003, vol. 13, pp. 13-21.

8. Supiot S., Gouard S., Charrier J., Apostolidis C., Chatal J-F., Barbet J., Davodeau F., Cherel M. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin. Cancer. Res., 2005, vol. 11, no. 19, pp. 7047-7052.

9. Niеtsvetov M.B., Moskaleva E.Ju., Posypanova G.A., Makarova O.V., Stepanov V.A., Rogov K.A., Koromyslova I.A., Karaulov A.V., Severin S.E., Severin E.S. Izuchenie jekspressii receptora AFP v opuholevyh i normal'nyh tkanjah cheloveka s pomoshh'ju immunogistohimicheskogo metoda [Research of expression of receptor of alpha-fetoprotein in human healthy and tumor tissues by immunohistochemica lmethods]. Immunologija – Immunology, 2005, vol. 26, no. 2, pp. 122-125.

10. Yabbarov N.G., Posypanova G.A., Vorontsov E.A., Popova O.N., Severin E.S. Targeted delivery of doxorubicin: Drug delivery system based on PAMAM dendrimers. Biochemistry (Moscow), 2013, vol. 78, no. 8, pp. 1128-1140.

11. Abdullah A.H.A.F., Fazren A., Mariusz S., Istvan T. Peptide conjugation via CuAAC ‘click’ chemistry. Molecules, 2013, vol. 18, no. 11, P. 13148-13174.

12. Petin V.G., Zhurakovskay G.P., Komarova L.N. Radiobiologicheskie osnovy sinergicheskogo vzaimodejstviya v biosfere [Radiobiological basis of synergistic interactions in the biosphere]. Moscow, GEOS, 2012. 291 p.

13. Zhang J., Zhou F., Wu X., Zhang X., Chen Y., Zha B.S., Niu F., Lu M., Hao G., Sun Y., Sun J., Peng Y., Wang G. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Brit. J. Pharmacol., 2012, vol. 165, pp. 120-134.

14. Baldini N., Scotlandi K., Serra M., Shikita T., Zini N., Ognibene A., Santi S., Ferracini R., Maraldi N.M. Nuclear immunolocalization of P-glycoprotein in multidrug-resistant cell lines showing similar mechanisms of doxorubicin distribution. Eur. J. Cell. Biol., 1995, vol. 68, pp. 226-239.

15. Gong Y., Duvvuri M., Krise J.P. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem., 2003, vol. 278, pp. 50234- 50239.

16. Munteanu E., Verdier M., Grandjean-Forestier F., Stenger C., Jayat-Vignoles C., Huet S., Robert J., Ratinaud M.H. Mitochondrial localization and activity of P-glycoprotein in doxorubicin-resistant K562 cells. Biochem. Pharmacol., 2006, vol. 71, pp. 1162-1174.

17. Myers C.E., McGuire W.P., Liss R.H., Ifrim I., Grotzinger K., Young R.C. Adriamycin: the role of lipid peroxidation in cadiac toxicity and tumor response. Science, 1977, vol. 197, issue 4299, pp. 165-167.

18. Doroshow J.H. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res., 1983, vol. 43, pp. 4543-4551.

19. Ravid A., Rocker D., Machlenkin A., Rotem C., Hochman A., Kessler-Icekson G., Liberman U.A., Koren R. 1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicininduced oxidative damage. Cancer Res., 1999, vol. 59, pp. 862-867.

Full-text article (in Russian)