Models of radionuclides behavior in "soil-plant" chain for decision support systems

«Radiation and Risk», 2022, vol. 31, No. 3, pp.57-76

DOI: 10.21870/0131-3878-2022-31-3-57-76

Authors

Nikitin A.N. – Deputy Director, C. Sc., Agr. Contacts: 4, Fedyuninsky str., Gomel, Republic of Belarus, 246007. Tel.: +375-232-51-22-31; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Cheshyk I.A. – Director, C. Sc., `Med., Associate Prof.
Shurankova O.A. – Deputy Head of Lab. Institute of Radiobiology of NAS of Belarus.
Kalinichenko S.A. – Lead. Researcher, C. Sc., Biol. Polesye State Radiation-Ecological Reserve.
1Institute of Radiobiology of the NAS of Belarus, Gomel, Republic of Belarus
2Polesye State Radiation-Ecological Reserve, Khoiniki, Republic of Belarus

Abstract

The main objectives for semimechanistic models enhancement are justified in the article. The "soil-plant" chain is an essential part of radioisotopes flows from nuclear accident depositions to human beings. Therefore a model which describes this system should be integrated into decision support systems for liquidation consequences of accidents with releasing radioisotopes into the environment, evaluation effectiveness of measures for radiation protection, and designing hazardous radiation facilities. Such a model must show rather exact forecast results, flexibility and wide application area convenience for practical use, and other properties. Presented now models of radionuclides behavior in "soil-plant" system divided on empiric, mechanistic, and semi-mechanistic. The empirical ones do not take into account the basic mechanisms of changes in the biological availability of radionuclides and their absorption by plants, and require constant updating and refinement of the transition param-eters. Mechanistic models are of little use in real life. The last ones best meet the requirements noted above. However, substantial efforts are needed for improving their accuracy, usability, and generalization. This requires integration into data models from existing and planned sensor systems; consideration of additional factors influencing the transfer of radionuclides to plants; increasing the level of generalization of models with adjustment to local conditions; the use of machine learning methods to integrate information accumulated in related fields into the model; coverage of more radioactive isotopes; adding an uncertainty estimate to the simulation result; integration of models of radionuclide behavior into geoinformation systems; maintaining a sufficient level of interpretability and visibility of modeling results.

Key words
radionuclides, cesium, bioavailability, soil, plant, human, accumulation, migration, model, decision support system.

References

1. IAEA. Power Reactor Information System (PRIS). The Database on Nuclear Power Reactors. Available at: https://pris.iaea.org/PRIS/home.aspx (Accessed 09.07.2021).

2. Bartzis J., Ehrhardt J., French S., Lochard J., Morrey M., Papamichail K.N., Sinkko K., Sohier A. RODOS: decision support for nuclear emergencies. In: Decision making: Recent developments and worldwide applications. Boston, MA, Springer US, 2000, pp. 381-395.

3. Shershakov V.M., Borodin R.V., Kosykh V.S. Radioecological analysis support system (RECASS). Radiat. Prot. Dosim., 1993, vol. 50, no. 2-4, pp. 181-184.

4. Bradley M.M. NARAC: an emergency response resource for predicting the atmospheric dispersion and as-sessing the consequences of airborne radionuclides. J. Environ. Radioact., 2007, vol. 96, no. 1-3, pp. 116-121.

5. Chino M., Ishikawa H., Yamazawa H. SPEEDI and WSPEEDI: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident. Radiati. Prot. Dosim., 1993, vol. 50, no. 2-4, pp. 145-152.

6. Monte L., Van der Steen J., Bergström U., Dıaz E.G., Håkanson L., Brittain J. The project MOIRA: a model-based computerised system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas. Final report. ENEA RT/AMB/2000/13. Rome, ENEA, 2000.

7. Cox G., Beresford N., Alvarez-Farizo B., Oughton D., Kis Z., Eged K., Thørring H., Hunt J., Wright S., Barnett C.L., Gil J.M., Howard B.J., Crout N.M. Identifying optimal agricultural countermeasure strategies for a hypothetical contamination scenario using the strategy model. J. Environ. Radioact., 2005, vol. 83, no. 3, pp. 383-397.

8. Ulanovsky A., Jacob P., Fesenko S., Bogdevitch I., Kashparov V., Sanzharova N. RESCA: decision support tool for remediation planning after the Chernobyl accident. Radiat. Environ. Biophys., 2010, vol. 50, no. 1, pp. 67-83.

9. Fesenko S., Jacob P., Ulanovsky A., Chupov A., Bogdevich I., Sanzharova N., Kashparov V., Panov A., Zhuchenka Yu. Justification of remediation strategies in the long term after the Chernobyl accident. J. Environ. Radioact., 2013, vol. 119, pp. 39-47.

10. Kirk G.J.D., Staunton S. On predicting the fate of radioactive cesium in soil beneath grassland. Eur. J. Soil Sci., 1989, vol. 40, no. 1, pp. 71-84.

11. Oates K., Barber S.A. Nutrient uptake: a microcomputer program to predict nutrient absorption from soil by roots. J. Agron. Educ., 1987, vol. 16, no. 2, pp. 65-68.

12. Jove M.C.R., Calzada V.R.V. Predicting radiocaesium root uptake based on potassium uptake parameters. A mechanistic approach. Plant Soil, 2000, vol. 222, pp. 35-49.

13. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environ-ments. Technical report series N 472. Vienna, IAEA, 2010.

14. Nisbet A.F., Woodman R.F.M. Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems. Health Phys., 2000, vol. 78, no. 3, pp. 279-288.

15. Frissel M., Deb D., Fathony M., Lin Y., Mollah A., Ngo N., Othman I., Robison W., Skarlou-Alexiou V., Topcuoğlu S., Twining J., Uchida S., Wasserman M. Generic values for soil-to-plant transfer factors of radiocesium. J. Environ. Radioact., 2002, vol. 58, no. 2-3, pp. 113-128.

16. Wasserman M.A., Pérez D.V., Bourg A.C.M. Behavior of cesium-137 in some Brazilian Oxisols. Commun. Soil Sci. Plant Anal., 2002, vol. 33, no. 7, pp. 1335-1349.

17. Wasserman M.A., Perez D.V., Bartoly F. Biogeochemical behavior of 137Cs and 60Co in tropical soils. Radioprotection, 2002, vol. 37, no. C1, pp. C1-277-C1-282.

18. Brimo K., Pourcelot L., Métivier J.M., Gonze M.A. Evaluation of semi-mechanistic models to predict soil to grass transfer factor of 137Cs based on long term observations in French pastures. J. Environ. Radioact., 2021, vol. 227, 106467.

19. Absalom J.P., Young S.D., Crout N.M.J., Nisbet A.F., Woodman R.F.M., Smolders E., Gillett A.G. Predicting soil to plant transfer of radiocesium using soil characteristics. Environ. Sci. Technol., 1999, vol. 33, no. 8, pp. 1218-1223.

20. Absalom J.P., Young S.D., Crout N.M.J., Sanchez A., Wright S.M., Smolders E., Nisbet A.F., Gillett A.G. Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics. J. Environ. Radioact., 2001, vol. 52, no. 1, pp. 31-43.

21. Van der Perk M., Burema J.R., Burrough P.A., Gillett A.G., Van der Meer M.B. A GIS-based environmental decision support system to assess the transfer of long-lived radiocaesium through food chains in areas con-taminated by the Chernobyl accident. Int. J. Geogr. Inf. Sci., 2001, vol. 15, no. 1, pp. 43-64.

22. Tarsitano D., Young S.D., Crout N.M.J. Evaluating and reducing a model of radiocaesium soil-plant uptake. J. Environ. Radioact., 2011, vol. 102, no. 3, pp. 262-269.

23. Brown J.E., Beresford N.A., Hosseini A., Barnett C.L. Applying process-based models to the Borssele scenario. Radioprotection, 2020, vol. 55, no. HS1, pp. S109-S117.

24. Steinhauser G., Brandl A, Johnson T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ., 2014, vol. 470-471, pp. 800-817.

25. Uematsu S., Smolders E., Sweeck L., Wannijn J., Van Hees M., Vandenhove H. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils. Sci. Total Environ., 2015, vol. 524-525, pp. 148-156.

26. Beresford N.A., Wright S.M., Howard B.J., Crout N.M.J., Arkhipov A., Voigt G. Aspects of the incorpora-tion of spatial data into radioecological and restoration analysis. In: Radiation legacy of the 20th century: environmental restoration. IAEATECDOC-1280. Vienna, IAEA, 2002, pp. 425-436.

27. White P.J., Broadley M.R. Mechanisms of caesium uptake by plants. New Phytol., 2000, vol. 147, pp. 241-256.

28. Zhu Y.G., Smolders E. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J. Exp. Bot., 2000, vol. 51, no. 351, pp. 1635-1645.

29. Smolders E., Van den Brande K., Merckx R. Concentrations of 137Cs and K in soil solution predict the plant availability of 137Cs in soils. Environ. Sci. Technol., 1997, vol. 31, no. 12, pp. 3432-3438.

30. Ramírez-Guinart O., Kaplan D., Rigol A., Vidal M. Deriving probabilistic soil distribution coefficients (Kd). Part 2: Reducing caesium Kd uncertainty by accounting for experimental approach and soil properties. J. Environ. Radioact., 2020, vol. 223-224, pp. 106407.

31. Wauters J., Elsen A., Cremers A., Konoplev A., Bulgakov A., Comans R. Prediction of solid/liquid distri-bution coefficients of radiocaesium in soils and sediments. Part one: A simplified procedure for the solid phase characterisation. Appl. Geochem., 1996, vol. 11, no. 4, pp. 589-594.

32. Rahman M.M., Rahman M.M., Koddus A., Ahmad G.U., Voigt G.Soil-to-plant transfer of radiocaesium for selected tropical plant species in Bangladesh. J. Environl Radioact., 2005, vol. 83, no. 2, pp. 199-211.

33. Van der Perk M., Lev T., Gillett A.G., Absalom J.P., Burrough P.A., Crout N.M.J., Garger E.K., Semiochkina N., Stephanishin Y.V., Voigt G. Spatial modelling of transfer of long-lived radionuclides from soil to agricultural products in the Chernigov region, Ukraine. Ecol. Model., 2000, vol. 128, no. 1, pp. 35-50.

34. Rahman M.M., Voigt G. Radiocaesium soil-to-plant transfer in tropical environments. J. Environ. Radioact., 2004, vol. 71, no. 2, pp. 127-138.

35. Simon S.L., Graham J.C., Terp S.P. Uptake of 40K and 137Cs in native plants of the Marshall Islands. J. Environ. Radioact., 2002, vol. 59, no. 2, pp. 223-243.

36. Kalinichenko S.A. Evaluation of the bioavailability of radionuclides entering the body of cattle when eating soil particles, by the in vitro method. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2002, vol. 42, no. 3, pp. 341-344. (In Russian).

37. Roussel-Debet S., Colle C. Comportement de radionucléides (Cs, I, Sr, Se, Tc) dans le sol: Proposition de valeurs de kd par défaut. Radioprotection, 2005, vol. 40, no. 2, pp. 203-229.

38. Wang C., Li W., Guo M., Ji J. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflec-tance mid-infrared Fourier-transform spectroscopy. Sci. Rep., 2017, vol. 7, no. 1, pp. 40709.

39. McBratney A.B., Minasny B., Rossel R.A.V. Spectral soil analysis and inference systems: a powerful com-bination for solving the soil data crisis. Geoderma, 2006, vol. 136, no. 1-2, pp. 272-278.

40. Janik L.J., Forrester S.T., Soriano-Disla J.M., Kirby J.K., McLaughlin M.J., Reimann C. GEMAS: predic-tion of solid-solution partitioning coefficients (Kd) for cationic metals in soils using mid-infrared diffuse reflec-tance spectroscopy. Environ. Toxicol. Chem., 2015, vol. 34, no. 2, pp. 224-234.

41. Ito A., Wagai R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Scientific Data, 2017, vol. 4, pp. 170103.

42. Ogasawara S., Nakao A., Yanai J. Radiocesium interception potential (RIP) of smectite and kaolin reference minerals containing illite (micaceous mineral) as impurity. Soil Sci. Plant Nutr., 2013, vol. 59, no. 6, pp. 852-857.

43. Dowdall M., Standring W., Shaw G., Strand P. Will global warming affect soil-to-plant transfer of radionu-clides? J. Environ. Radioact., 2008, vol. 99, no. 11, pp. 1736-1745.

44. Fried M., Broeshart H. The soil-plant system: In relation to inorganic nutrition. New York, San Francisco, London, Academic Press, 1967. 358 p.

45. Ehlken S., Kirchner G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J. Environ. Radioact., 2002, vol. 58, no. 2-3, pp. 97-112.

46. Ehlken S., Kirchner G. Seasonal variations in soil-to-grass transfer of fallout strontium and cesium and of potassium in north German soils. J. Environ. Radioact., 1996, vol. 33, no. 2, pp. 147-181.

47. Nikitin A., Shurankova O., Mischenko E., Leferd G. Accumulation of 137Cs in the aerial parts of juvenile spring wheat under the impact of short change in soil moisture. In: Sakharov readings 2020: Environmental problems of the XXI century, materials of the 20th international scientific conference, May 21-22, 2020, Minsk, Republic of Belarus. Minsk: Information Center of the Ministry of Finance, 2020, pp. 365-369. (In Russian).

48. Gadd G.M. Roles of micro-organisms in the environmental fate of radionuclides. In: Ciba foundation sympo-sium 203 – Health impacts of large releases of radionuclides. Chichester, Wiley, 1997, pp. 94-108.

49. Dighton J., Clint G.M, Poskitt J.M. Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol. Res., 1991, vol. 95, no. 9, pp. 1052-1056.

50. Parekh N.R., Poskitt J.M., Dodd B.A., Potter E.D., Sanchez A. Soil microorganisms determine the sorption of radionuclides within organic soil systems. J. Environ. Radioact., 2008, vol. 99, no. 5, pp. 841-852.

51. Raskob W., Beresford N.A., Duranova T., Korsakissok I., Mathieu A., Montero M., Müller T., Turcanu C., Woda C. Confidence: achievements and way forward. Radioprotection, 2020, vol. 55, no. HS1, pp. S39-S43.

52. Duffa C., Bailly du Bois P., Caillaud M., Charmasson S., Couvez C., Didier D., Dumas F., Fievet B., Morillon M., Renaud P., Thébault H. Development of emergency response tools for accidental radiological contamination of French coastal areas. J. Environ. Radioact., 2016, vol. 151, no. 2, pp. 487-494.

53. Bailly du Bois P., Garreau P., Laguionie P., Korsakissok I. Comparison between modelling and measure-ment of marine dispersion, environmental half-time and 137Cs inventories after the Fukushima Daiichi accident. Ocean Dynamics, 2014, vol. 64, no. 3, pp. 361-383.

54. Willey N.J., Fawcett K. A phylogenetic effect on strontium concentrations in angiosperms. Environ. Exp. Bot., 2006, vol. 57, no. 3, pp. 258-269.

55. Beresford N.A., Wood M.D., Vives i Batlle J., Yankovich T.L., Bradshaw C., Willey N.J. Making the most of what we have: application of extrapolation approaches in radioecological wildlife transfer models. J. Environ. Radioact., 2016, vol. 151, pp. 373-386.

56. Beresford N.A., Barnett C.L., Guillén J. Can models based on phylogeny be used to predict radionuclide activity concentrations in crops? J. Environ. Radioact., 2020, vol. 218, pp. 106263.

57. Nikitin A.N. Dynamic computational graph for generalization of disparate scientific data into a universal model by the example of the behavior of cesium in the "soil-plant" system. BIG data and high-level analysis: Sat. mat. of the VI Int. Scientific and Practical Conf., May 20-21, 2020. Minsk: Bestprint, 2020, vol. 1, pp. 350-357. (In Russian).

58. Durand V., Maître M., Crouaïl P., Schneider T., Sala R., Marques-Nunes P., Paiva I., Monteiro Gil O., Reis M., Hilliard C., Tafili V., Twenhöfel C., Van Asselt E., Trueba C., Montero M., Duranova T. Towards an improved decision-making process to better cope with uncertainties following a nuclear accident. Radioprotection, 2020, vol. 55, no. HS1, pp. S135-S143.

59. Hamburger T., Gering F., Yevdin Y., Schantz S., Geertsema G., de Vries H. Uncertainty propagation from ensemble dispersion simulations through a terrestrial food chain and dose model. Radioprotection, 2020, vol. 55, no. HS1, pp. S69-S74.

60. Crout N., Beresford N., Sanchez A. Predicting transfer of radionuclides: soil-plant-animal. Modelling radioactivity in the environment, Elsevier, 2003, pp. 261-286.

61. Titov I.E., Krechetnikov V.V., Mikailova R.A., Panov A.V. Geoinformation decision support system for re-mediation of the 137Cs contaminated agricultural lands after the Chernobyl NPP accident. Nucl. Eng. Technol. 2022, vol. 54, no. 6, pp. 2244-2252.

62. Stankevich S., Sakhatsky A., Bobro D., Iwasaki A., Nakasuka Sh., Yoshimoto S., Aoyanagi Y. Risk assessment of adsorbed radionuclide emission by fire within Fukushima exclusion zone using multispectral satellite imagery. Ukr. J. Remote Sens., 2015, no. 4, pp. 4-9.

63. Linnik V.G. Landscape differentiation of technogenic radionuclides. Moscow: RAS, 2018. 372 p. (In Russian).

Full-text article (in Russian)