Radiation dermatitis: pathogenesis, diagnostics and classification. Review

«Radiation and Risk», 2023, vol. 32, No. 4, pp.103-122

DOI: 10.21870/0131-3878-2023-32-4-103-122

Authors

Sorokina S.S. – Sen. Researcher, C. Sc., Biol. Contacts: 3 Institutskaya str, Pushchino, Moscow region, Russia, 142290. Tel.: 8(4967) 73-94-31; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Karmanova E. – Junior Researcher
Popova N.R. – Lead. Researcher, C. Sc., Biol. ITEB RAS.
Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino

Abstract

The radiotherapy has remained one of the most effective methods of treating cancer for several decades. Given the nonspecificity of ionizing radiation in relation to cancer cells, in the process of a target organ irradiating, it inevitably passes through the main human barrier organ – the skin, that often leads to such a long-term consequence as radiation dermatitis (RD). RD has been found to be a complication in more than 85% of patients undergoing standard radiotherapy. The pathogenesis of RD is not fully understood and, as a result, there is no “gold” standard for its prevention and treatment. To date, it has been possible to establish a number of features of the induction and development of RD, which explains the ineffectiveness of the available traditional methods of treating wounds and burns. The pathogenesis of RD is determined by the structural features of the skin, the significant contribution of ROS to radiation-induced inflammation, as well as a number of factors, which are usually divided into factors dependent on the patient and factors associated with the source of radiation. It has been shown that the pathogenesis of chronic RD and fibrosis has a number of distinctive features compared to acute RD, in particular, hypoxia is of particular importance during the progression of fibrosis, and chronic RD is accompanied by cell aging. To date, a modern classification of local radiation injuries by severity has been developed, based on developed clinical rating scales, which is important for proper treatment, management and monitoring in clinical practice. Among the methods for diagnosing RD, optical imaging methods occupy a special place, allowing non-invasive detection of various areas of skin damage. Despite significant advances in the study of RD, it is still a serious medical and social problem that significantly worsens the patient’s quality of life. Further study of the mechanisms of RD induction should lead to the development of new approaches in the prevention and treatment of RD.

Key words
radiation-induced injury, radiation burn, radiation dermatitis, radiation damage of the subcutaneous adipose tissue, radiodermatitis, radiation skin toxicity, fibrosis, gamma and hadron therapy, inflammation, chronic oxidative stress.

References

1. Hellman S., Weichselbaum R.R. Radiation oncology. JAMA, 1996, vol. 275, no. 23, pp. 1852-1853.

2. Reddy S., Vijayakumar S. Evaluating clinical skills of radiation oncology residents: parts I and II. Int. J. Cancer, 2000, vol. 90., no. 1, pp. 1-12.

3. Durante M., Loeffler J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol., 2010, vol. 7, no. 1, pp. 37-43.

4. Vozenin M.C., Bourhis J., Durante M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol., 2022, vol. 19, no. 12, pp. 791-803.

5. Salvo N., Barnes E., van Draanen J., Stacey E., Mitera G., Breen D., Giotis A., Czarnota G., Pang J., De Angelis C. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol., 2010, vol. 17, no. 4, pp. 94-112.

6. Ryan J.L., Heckler C.E., Ling M., Katz A., Williams J.P., Pentland A.P., Morrow G.R. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, vol. 180, no. 1, pp. 34-43.

7. Feight D., Baney T., Bruce S., McQuestion M. Putting evidence into practice: evidence-based interventions for radiation dermatitis. Clin. J. Oncol. Nurs., 2011, vol. 15, no. 5, pp. 481-492.

8. Kole A.J., Kole L., Moran M.S. Acute radiation dermatitis in breast cancer patients: challenges and solutions. Breast Cancer, 2017, vol. 9, pp. 313-323.

9. Hopewell J.W. The skin: its structure and response to ionizing radiation. Int. J. Radiat. Biol., 1990, vol. 57, no. 4, pp. 751-773.

10. Harper J.L., Franklin L.E., Jenrette J.M., Aguero E.G. Skin toxicity during breast irradiation: pathophysiology and management. South. Med. J., 2004, vol. 97, no. 10, pp. 989-993.

11. Waghmare C.M. Radiation burn – from mechanism to management. Burns, 2013, vol. 39, no. 2, pp. 212-219.

12. Brown K.R., Rzucidlo E. Acute and chronic radiation injury. J. Vasc. Surg., 2011, vol. 53, no. 1 (Suppl.), pp. 15S-21S.

13. Iacovelli N.A., Torrente Y., Ciuffreda A., Guardamagna V.A., Gentili M., Giacomelli L., Sacerdote P. Topical treatment of radiation-induced dermatitis: current issues and potential solutions. Drugs Context, 2020, vol. 9, pp. 4-7. DOI: 10.7573/dic.2020-4-7.

14. Porock D., Kristjanson L. Skin reactions during radiotherapy for breast cancer: the use and impact of topical agents and dressings. Eur. J. Cancer Care, 1999, vol. 8, no. 3, pp. 143-153.

15. Koenig T.R., Wolff D., Mettle F.A., Wagner L.K. Skin injuries from fluoroscopically guided procedures. Part 1. Characteristics of radiation injury. Am. J. Roentgenol., 2001, vol. 177, no. 1, pp. 3-11.

16. Hymes S.R., Strom E.A., Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment. J. Am. Acad. Dermatol., 2006, vol. 54, no. 1, pp. 28-46.

17. Pierard G.E., Pierard-Franchimont C., Paquet P., Quatresooz P. Emerging therapies for ionizing radiation-associated skin field carcinogenesis. Expert. Opin. Pharmacother., 2009, vol. 10, no. 5, pp. 813-821.

18. Ryan J.L. Ionizing radiation: the good, the bad, and the ugly. J. Invest. Dermatol., 2012, vol. 132, no. 3 (Pt 2), pp. 985-993.

19. Valladeau J., Saeland S. Cutaneous dendritic cells. Semin. Immunol., 2005, vol. 17, no. 4, pp. 273-283.

20. Kupper T.S., Fuhlbrigge R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol., 2004, vol. 4, no. 3, pp. 211-222.

21. Takashima A., Bergstresser P.R. Cytokine-mediated communication by keratinocytes and Langerhans cells with dendritic epidermal T cells. Semin. Immunol., 1996, vol. 8, no. 6, pp. 333-339.

22. Muller K., Meineke V. Radiation-induced alterations in cytokine production by skin cells. Exp. Hematol., 2007, vol. 35, no. 4 (Suppl. 1), pp. 96-104.

23. Cummings R.J., Mitra S., Foster T.H., Lord E.M. Migration of skin dendritic cells in response to ionizing radiation exposure. Radiat. Res., 2009, vol. 171, no. 6, pp. 687-697.

24. Muller K., Meineke V. Radiation-induced mast cell mediators differentially modulate chemokine release from dermal fibroblasts. J. Dermatol. Sci., 2011, vol. 61, no. 3, pp. 199-105.

25. Holler V., Buard V., Gaugler M.H., Guipaud O., Baudelin C., Sache A., Perez Mdel R., Squiban C., Tamarat R., Milliat F., Benderitter M. Pravastatin limits radiation-induced vascular dysfunction in the skin. J. Invest. Dermatol., 2009, vol. 129, no. 5, pp. 1280-1291.

26. Kim J.H., Kolozsvary A.J.J., Jenrow K.A., Brown S.L. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol., 2013, vol. 89, no. 5, pp. 311-318.

27. Amber K.T., Shiman M.I., Badiavas E.V. The use of antioxidants in radiotherapy-induced skin toxicity. Integr. Cancer Ther., 2014, vol. 13, no. 1, pp. 38-45.

28. Morgan K. Radiotherapy-induced skin reactions: prevention and cure. Br. J. Nurs., 2014, vol. 23, no. 16, pp. S24, S26-32.

29. Yarmonenko S.P., Vajnson A.A. Radiobiologiya cheloveka i zhivotnykh [Radiobiology of humans and animals]. Moscow, Vysshaya shkola, 2004. 549 p.

30. McQuestion M. Evidence-based skin care management in radiation therapy. Semin. Oncol. Nurs., 2006, vol. 22, no. 3, pp. 163-173.

31. Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: a review of our current understanding, Am. J. Clin. Dermatol, 2016, vol. 17, no. 3, pp. 277-292.

32. Williams J.P., McBride W.H. After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int. J. Radiat. Biol., 2011, vol. 87, no. 8, pp. 851-868.

33. Benderitter M., Isoir M., Buard V., Benderitter M., Isoir M., Buard V., Durand V., Linard C., Vozenin-Brotons M.C., Steffanazi J., Carsin H., Gourmelon P. Collapse of skin antioxidant status during the subacute period of cutaneous radiation syndrome: a case report. Radiat. Res., 2007, vol. 167, no. 1, pp. 43-50.

34. Vano-Galvan S., Fernandez-Lizarbe E., Truchuelo M., Diaz-Ley B., Grillo E., Sanchez V., Ríos-Buceta L., Paoli J., Sancho S., Montero A., Hernanz R., Ramos A., Jaen P., Gonzalez S. Dynamic skin changes of acute radiation dermatitis revealed by in vivo reflectance confocal microscopy. J. Eur. Acad. Dermatol. Venereol., 2013, vol. 27, no. 9, pp. 1143-1150.

35. Glover D., Harmer V. Radiotherapy-induced skin reactions: assessment and management. Br. J. Nurs., 2014, vol. 23, no. 4, pp. S28, S30-35.

36. Hu S.C., Hou M.F., Luo K.H., Chuang H.Y., Wei S.Y., Chen G.S., Chiang W., Huang C.J. Changes in biophysical properties of the skin following radiotherapy for breast cancer. J. Dermatol., 2014, vol. 41, no. 12, pp. 1087-1094.

37. Zhang S., Wang W., Gu Q., Xue J., Cao H., Tang Y., Xu X., Cao J., Zhou J., Wu J., Ding W.Q. Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic. Biol. Med., 2014, vol. 69, pp. 96-107.

38. Perez-Aso M., Mediero A., Low Y.C., Levine J., Cronstein B.N. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J., 2016, vol. 30, no. 1, pp. 457-465.

39. Yu D., Li S., Wang S., Li X., Zhu M., Huang S., Sun L., Zhang Y., Liu Y., Wang S. Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs, 2016, vol. 14, no. 10, pp. 182. DOI: 10.3390/md14100182.

40. Kowzun M.J., Rifkin W.J., Borab Z.M., Ellison T., Soares M.A., Wilson S.C., Lotfi P., Bandekar A., Sofou S., Saadeh P.B., Ceradini D.J. Topical inhibition of PUMA signaling mitigates radiation injury. Wound Repair Regen., 2018, vol. 26, no. 6, pp. 413-425.

41. Chan R.J., Webster J., Chung B., Marquart L., Ahmed M., Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer, 2014, vol. 14, pp. 53. DOI: 10.1186/1471-2407-14-53.

42. De Langhe S., Mulliez T., Veldeman L., Remouchamps V., van Greveling A., Gilsoul M., De Schepper E., De Ruyck K., De Neve W., Thierens H. Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer, 2014, vol. 14, pp. 711. DOI: 10.1186/1471-2407-14-711.

43. Hindley A., Zain Z., Wood L., Whitehead A., Sanneh A., Barber D., Hornsby R. Mometasone furoate cream reduces acute radiation dermatitis in patients receiving breast radiation therapy: results of a randomized trial. Int. J. Radiat. Oncol. Biol. Phys., 2014, vol. 90, no. 4, pp. 748-755.

44. Radvansky L.J., Pace M.B., Siddiqui A. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia. Am. J. Health Syst. Pharm., 2013, vol. 70, no. 12, pp. 1025-1032.

45. Potten C.S. Radiation and skin. London, Taylor & Francis, 1985. 237 p.

46. Archambeau J.O., Pezner R., Wasserman T. Pathophysiology of irradiated skin and breast. Int. J. Radiat. Oncol. Biol. Phys., 1995, vol. 31, no. 5, pp. 1171-1185.

47. Bellon J.R., Lindsley K.L., Ellis G.K., Gralow J.R., Livingston R.B., Austin Seymour M.M. Concurrent radiation therapy and paclitaxel or docetaxel chemotherapy in high-risk breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 48, no. 2, pp. 393-397.

48. Piroth M.D., Krempien R., Wannenmacher M., Zierhut D. Radiation recall dermatitis from docetaxel. Onkologie, 2002, vol. 25, no. 5, pp. 438-440.

49. Azria D., Gourgou S., Sozzi W.J., Zouhair A., Mirimanoff R.O., Kramar A., Lemanski C., Dubois J.B., Romieu G., Pelegrin A., Ozsahin M. Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients. Br. J. Cancer, 2004, vol. 91, no. 7, pp. 1251-1260.

50. Meyer F., Fortin A., Wang C.S., Liu G., Bairati I. Predictors of severe acute and late toxicities in patients with localized head-and-neck cancer treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2012, vol. 82, no. 4, pp. 1454-1462.

51. Spalek M., Jonska-Gmyrek J., Gałecki J. Radiation-induced morphea: a literature review. J. Eur. Acad. Dermatol. Venereol., 2015, vol. 29, no. 2, pp. 197-202.

52. Martin M., Lefaix J., Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 47, no. 2, pp. 277-290.

53. Ashcroft G.S., Yang X., Glick A.B., Weinstein M., Letterio J.L., Mizel D.E., Anzano M., Greenwell-Wild T., Wahl S.M., Deng C., Roberts A.B. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol., 1999, vol. 1, no. 5, pp. 260-266.

54. Flanders K.C., Sullivan C.D., Fujii M., Sowers A., Anzano M.A., Arabshahi A., Major C., Deng C., Russo A., Mitchell J.B., Roberts A.B. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am. J. Pathol., 2002, vol. 160, no. 3, pp. 1057-1068.

55. Lee J.W., Tutela J.P., Zoumalan R.A., Thanik V.D., Nguyen P.D., Varjabedian L., Warren S.M., Saadeh P.B. Inhibition of Smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch. Otolaryngol. Head Neck Surg., 2010, vol. 136, no. 7, pp. 714-719.

56. Kumar R., Griffin M., Adigbli G., Kalavrezos N., Butler P.E. Lipotransfer for radiation-induced skin fibrosis. Br. J. Surg., 2016, vol. 103, no. 8, pp. 950-961.

57. Wang Z., Chen Z., Jiang Z., Luo P., Liu L., Huang Y., Wang H., Wang Y., Long L., Tan X., Liu D., Jin T., Wang Y., Wang Y., Liao F., Zhang C., Chen L., Gan Y., Liu Y., Yang F., Huang C., Miao H., Chen J., Cheng T., Fu X., Shi C. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun., 2019, vol. 10, no. 1, pp. 2538. DOI: 10.1038/s41467-019-10386-8.

58. Ejaz A., Greenberger J.S., Rubin P.J. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol. Ther., 2019, vol. 204, pp. 107399. DOI: 10.1016/j.pharmthera.2019.107399.

59. Weigel C., Schmezer P., Plass C., Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene, 2015, vol. 34, no. 17, pp. 2145-2155.

60. Qiu Y., Gao Y., Yu D., Zhong L., Cai W., Ji J., Geng F., Tang G., Zhang H., Cao J., Zhang J., Zhang S. Genome-wide analysis reveals zinc transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF- signaling pathway. J. Invest. Dermatol., 2020, vol. 140, no. 1, pp. 94-102.

61. Kim J.M., Yoo H., Kim J.Y., Oh S.H., Kang J.W., Yoo B.R., Han S.Y., Kim C.S., Choi W.H., Lee E.J., Byeon H.J., Lee W.J., Lee Y.S., Cho J. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell Physiol. Biochem., 2018, vol. 48, no. 3, pp. 959-970.

62. Valinciute G., Weigel C., Veldwijk M.R., Oakes C.C., Herskind C., Wenz F., Plass C., Schmezer P., Popanda O. BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiother. Oncol., 2017, vol. 125, no. 1, pp. 168-174.

63. Diagnostika, lechenie mestnykh luchevykh porazheniy i ikh otdalennykh posledstviy. Federalnye klinicheskie rekomendatsii [Diagnostics, treatment of local radiation injuries and their long-term consequences. Federal clinical guidelines]. Moscow, 2015. 62 p.

64. Jones I.M., Tucker J.D., Langlois R.G., Mendelsohn M.L., Pleshanov P., Nelson D.O. Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Radiat. Prot. Dosim., 2001, vol. 97, no. 1, pp. 61-67.

65. Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat. Res., 2002, vol. 43, pp. S13-S19.

66. Mettler F.A., Upton A.C. Medical effects of ionizing radiation. Philadelphia, W.B. Saunders, 1995.

67. Yohan D., Kim A., Korpela E., Liu S., Niu C., Wilson B.C., Chin L.C. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. Biomed. Opt. Express., 2014, vol. 5, no. 5, pp. 1309-1320.

68. Jang W., Shim S., Wang T., Yoon Y., Jang W., Myung J., Park S., Kim K. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy. Sci. Rep., 2016, vol. 6, no. 1, pp. 19216. DOI: 10.1038/srep19216.

69. Mendelsohn F.A., Divino C.M., Reis E.D., Kerstein M.D. Wound care after radiation therapy. Adv. Skin Wound Care, 2002, vol. 15, no. 5, pp. 216-224.

70. Bey E., Prat M., Duhamel P., Benderitter M., Brachet M., Trompier F., Battaglini P., Ernou I., Boutin L, Gourven M., Tissedre F., Créa S., Mansour C.A., de Revel T., Carsin H., Gourmelon P., Lataillade J.J. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen., 2010, vol. 18, no. 1, pp. 50-58.

Full-text article (in Russian)